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Abstract

Körner and Malvenuto asked whether one can find
(

n
bn/2c

)
linear orderings (i. e., permutations) of

the first n natural numbers such that any pair of them place two consecutive integers somewhere in
the same position. This led to the notion of graph-different permutations. We extend this concept
to directed graphs, focussing on orientations of the semi-infinite path whose edges connect consecutive
natural numbers. Our main result shows that the maximum number of permutations satisfying all the
pairwise conditions associated with all of the various orientations of this path is exponentially smaller, for
any single orientation, than the maximum number of those permutations which satisfy the corresponding
pairwise relationship. This is in sharp contrast with a result of Gargano, Körner, and Vaccaro concerning
the analogous notion of Sperner capacity of families of finite graphs. We improve the exponential lower
bound for the original problem, and list a number of open questions.

1 Introduction
Let N denote the set of natural numbers and let D be an arbitrary loopless directed graph (digraph) with
vertex set N. We will say that two permutations σ and τ of the first n natural numbers are D-different if
there is an i ∈ [n] = {1, . . . , n} such that the ordered couple of its images under these two permutations
satisfies (σ(i), τ(i)) ∈ E(D). We write N(D,n) for the largest cardinality of a set of pairwise D-different
permutations of [n]. (In such a set every couple is meant to be D-different in both orders.) Our main
concern in this paper will be the behaviour of N(D,n) in the special cases when D is an orientation of the
semi-infinite path L containing as edges the pairs of consecutive positive integers.

The above definitions naturally extend the notion of graph-different permutations investigated in [13,
14, 17] in the undirected case to digraphs. In fact, if we identify (as we will) undirected graphs with their
symmetrically directed equivalent, i.e., with digraphs having two oppositely oriented edges in place of all
of their undirected edges, then the undirected notion becomes a special case of the directed one. This
relationship is analogous to that between the Shannon capacity of graphs [22] and its generalization to
digraphs called Sperner capacity (cf. [10, 16] for its origins and [1, 4, 6, 11, 12, 15, 19, 20] for some further
results about Sperner capacity). The close connection of Shannon capacity and the notion of graph-different
permutations for undirected graphs is explored on a quantitative level in [17] and one could easily formulate
a similar statement for the directed case.
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To make these notions more intuitive it is useful to think about (undirected or symmetrically directed)
edges as signs of distinguishability. That is, an edge connecting natural numbers i and j would mean that i
and j are distinguishable. Thinking about permutations of [n] as n-length sequences containing each element
of [n] exactly once, pairs of permutations that are D-different with respect to a symmetrically directed graph
D are exactly those that are distinguishable (with respect to D) as sequences if we consider two sequences
distinguishable if and only if they contain a position where their elements are distinguishable. The extension
to directed graphs can be justified by the usefulness of a similar extension in case of finite graphs and
sequences over their vertex set. This latter extension gave rise to the notion of Sperner capacity that we
already mentioned above.

The motivating example for introducing graph-different permutations was the puzzle presented in [13]
that asks for the value of N(L, n), i.e., the maximum size of a set of permutations of the elements in [n]
satisfying that, if σ and τ are two distinct permutations in this set, then there is some i ∈ [n] for which
|σ(i) − τ(i)| = 1, that is, {σ(i), τ(i)} ∈ E(L). (Note that we use our convention of identifying undirected
graphs with their symmetrically directed equivalent. This way the meaning of N(L, n) is consistent with
the general definition of N(D,n) above.) The natural upper bound N(L, n) ≤

(
n

bn/2c
)

was presented, and
conjectured to be sharp, in [13]. It is still an open problem whether N(L, n) is always equal to this upper
bound. Indeed, even the weaker conjecture that R(L) := limn→∞

1
n logN(L, n) = limn→∞

1
n log

(
n

bn/2c
)
= 1

remains open; later in the paper we show that R(L) ≥ 0.8604. The base of logarithms is always taken to be 2.
In this paper we will mainly focus on the various orientations of L. Our main result exhibits an exponential

gap betwen the maximum size of a set of permutations that are pairwise ~L-different for any fixed orientation
~L of L and the maximum size of a set of such permutations that are pairwise ~L-different simultaneously for
all orientations ~L of L. This is in sharp contrast with one of the main results about Sperner capacity proven
in [11].

2 Fixed orientations: a lower bound
Given an undirected graph G, an orientation of G is a digraph obtained from G by replacing each edge {x, y}
with one directed edge, either from x to y or from y to x.

Let ~L be any fixed orientation of the semi-infinite path L, that is, the edge set of ~L contains, for every
i ∈ N, exactly one of the ordered pairs (i, i+ 1) and (i+ 1, i).

We define the permutation capacity of ~L to be

R(~L) = lim sup
n→∞

1

n
logN(~L, n),

that is, the asymptotic exponent of N(~L, n). (It is easy to see that N(~L, n) has exponential growth in n for
any oriented version ~L of L, thus the definition of R(~L) provides a natural normalization.)

Denoting by L the set of all orientations of L, we also define

Rmin(L) = inf
~L∈L

R(~L) and Rmax(L) = sup
~L∈L

R(~L).

It is clear from these definitions that Rmin(L) ≤ Rmax(L) ≤ R(L) ≤ 1. The last inequality follows from
the bound N(L, n) ≤

(
n

bn/2c
)

(see [13]) one obtains by noting that, for two L-different permutations, the set
of positions of odd (even) numbers must differ. (Here we use the notion of being L-different again in the
sense of our definitions, identifying L with the symmetrically directed equivalent of its originally undirected
version.)

Our first result is the following lower bound.

Theorem 1.

Rmin(L) ≥ log
1 +

√
5

2
≈ 0.694.
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An improved lower bound will also be given for Rmin(L) in Section 5; the above statement is included here
because it has a simpler proof, and the lower bound is already large enough for our main conclusion in the
next section.

To prove Theorem 1 we need some preparation. For an arbitrary digraph D on N let ΓD(n) (the “Γ-
graph” corresponding to D and n) be the digraph defined as follows. The vertex set of ΓD(n) consists of all
the different permutations of the elements of [n]. An ordered pair (σ, τ) of permutations is an edge of ΓD(n)
if there exists an i ∈ [n] for which (σ(i), τ(i)) ∈ E(D). We denote by ΓD(j)

(n) the similarly defined graph
on the permutations of numbers j, j + 1, . . . , j + n− 1.

Figure 1 shows pictures of the six-vertex graph ΓD(3) in the two cases when D = L1 and D = L2,
respectively, where L1 is an oriented version of the semi-infinite path L starting with the two edges (1, 2)
and (2, 3), while L2 starts with the two edges (2, 1) and (2, 3). (With slight abuse of the notation we also
think about L1 and L2 as just the three-vertex paths themselves containing the said edges.)

L1:
1 2 3

ΓL1
(3):

312 321

213 231

123 132

L2:
1 2 3

ΓL2
(3):

312 321

213 231

123 132

Figure 1: The digraphs ΓD(3) for D = L1 and D = L2

For an arbitrary digraph D, its symmetric clique number ωs(D) is the maximum number of vertices of
D that form a symmetric clique, i.e., a subgraph in which every ordered pair of distinct nodes forms an
edge. In particular, it follows from the definitions that N(D,n) = ωs(ΓD(n)). The transitive clique number
ωtr(D) of a digraph D is the largest number of vertices in D that form a transitive clique, i.e., a subgraph
in which the vertices could be labelled by numbers 1, 2, . . . , k so that each label appears only once and all
ordered pairs (u, v) form edges where u is labelled with a smaller number than v. Clearly, ωs(D) ≤ ωtr(D)
holds for every digraph D. For the clique number of an undirected graph G we use the usual notation ω(G).

The reader can easily check from Figure 1 that ωs(ΓL1(3)) = 2 and ωs(ΓL2(3)) = 3, thus the orientation
matters in this respect. On the other hand, the transitive clique number of both ΓL1(3) and ΓL2(3) is 3.

We need the following technical lemma relating the value

tL(n) := min
~L∈L

{ωtr(Γ~L(n))}

to the permutation capacity of graphs in L.

Lemma 2.
R(~L) ≥ 1

n
log tL(n)

for any fixed orientation ~L of the semi-infinite path L and any natural number n.

Proof. Fix n ∈ N and ~L ∈ L. For every j ∈ N, let L(j) denote the n-vertex path with the orientation induced
by ~L on the vertices (j − 1)n+1, (j − 1)n+2, . . . , jn. (Recall that the corresponding Γ-graph is denoted by
Γ~L((j−1)n+1)

(n).) It follows from the definition of t := tL(n) that, for every j, there exist t permutations of
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the vertices of L(j) which form a transitive clique in Γ~L((j−1)n+1)
(n), i.e., they can be labelled by σj,1, . . . , σj,t

so that for every k < ` there is an 1 ≤ r ≤ n for which we have (σj,k(r), σj,`(r)) ∈ E(L(j)). Fix such a set of
permutations Mj together with the above type of labelling for every j < h, where h is some appropriately large
natural number. Now consider all permutations in Shn that can be written in the form of σ1,i1σ2,i2 . . . σh,ih ,
where σj,ij ∈ Mj for each j. There are th such permutations, and there is an edge from σ1,i1σ2,i2 . . . σh,ih

to σ1,j1σ2,j2 . . . σh,jh in Γ~L(hn) whenever ik < jk for some index k. Therefore, the subset SK of all these
permutations for which the sum

∑h
j=1 ij is a fixed number K forms a symmetric clique in Γ~L(hn). Since the

above sum can take fewer than h · t different values, this implies that N(~L, hn) = ωs(Γ~L(hn)) ≥
th

h·t . Taking
the (hn)-th root, the logarithm, and the limit in h, we arrive at the stated inequality.

Lemma 3. We have
tL(n) ≥ Fn+1,

where Fn denotes the n-th element of the Fibonacci sequence defined by F1 = F2 = 1, Fn+1 = Fn + Fn−1

for n ≥ 3.

Proof. We use induction on n. We obviously have tL(1) = 1 = F2 and tL(2) = 2 = F3. Assuming the
validity of the stated inequality for all n ≤ k, we show it for n = k + 1. Fix an arbitrary orientation ~L ∈ L.
For i = k − 1 and i = k, let Mi be a set of permutations of 1, . . . , i forming a transitive clique of size Fi+1

in Γ~L(i). Extend the permutations in Mk−1 to permutations of [k+ 1] by putting k in the last position and
k + 1 in the next to last position thus obtaining the set

Mk−1(k + 1)k = {σ(1) . . . σ(k − 1)(k + 1)k : σ ∈ Mk−1}.

Similarly, define the set
Mk(k + 1) = {σ(1) . . . σ(k)(k + 1) : σ ∈ Mk}.

The set Mk+1 := (Mk−1(k + 1)k) ∪ (Mk(k + 1)) then forms a transitive clique in Γ~L(k + 1) (depending on
the orientation of the edge {k, (k + 1)} we have the first or the second set dominating the other) and has
size Fk−1 + Fk = Fk+1. Since ~L was an arbitrary orientation of L, this implies the statement.

Proof of Theorem 1. Combining Lemma 2 with Lemma 3 gives us R(~L) ≥ lim supn→∞
1
n logFn+1; thus the

well-known explicit form of the Fibonacci numbers implies the statement.

3 Robust capacity: an upper bound
One of the main results about Sperner capacity is a “bottleneck theorem” [11] concerning digraph families; see
also the discussion in the next section. In this section, we prove that an analogous statement does not hold
for the permutation capacity of the infinite family of graphs formed by all orientations of the semi-infinite
path L.

Let ΓL(n) denote the following graph on the common vertex set of the graphs Γ~L(n) with ~L ∈ L. The
edge set of ΓL(n) is

E(ΓL(n)) := ∩~L∈LE(Γ~L(n)).

Note that though ΓL(n) is a directed graph, it does not depend on any particular orientation of L, since
it contains those edges that are present in all the digraphs Γ~L(n) for ~L ∈ L. Figure 2 below shows the
digraph ΓL(3). It is the intersection of four graphs ΓLi(n), (i = 1, . . . , 4), where L1, . . . , L4 denote the four
different oriented 3-vertex paths containing some orientation of the edges {1, 2} and {2, 3}. Two of these
paths, L1 and L2, were shown in (the top region of) Figure 1. The remaining two orientations, L3 and L4,
are just the reversed versions of L1 and L2, respectively. Similarly, ΓL3(3) is just the reversed version of
ΓL1(3) and ΓL4(3) is the reversed version of ΓL2(3). (The latter two are in fact identical, as they happen
to be symmetrically directed graphs, cf. the second picture in Figure 1.) The intersection of these 4 graphs
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ΓL(3):

312 321

213 231

123 132

Figure 2: The digraph ΓL(3)

is then just the intersection graph of ΓL1(3) and ΓL3(3) as these two are both subgraphs of the other two
graphs involved in the intersection.

We would like to understand the asymptotic behaviour of ωs(ΓL(n)). In other words, we are interested
in the size of the largest set of permutations of [n], any two elements σ and τ of which satisfy that, for any
~L ∈ L, there is an i and a j such that (σ(i), τ(i)) ∈ E(~L) and (τ(j), σ(j)) ∈ E(~L).

Assume now that two permutations, σ and τ are in the above relation, i.e., for any oriented version ~L of
L there are i, j ∈ N such that (σ(i), τ(i)) ∈ E(~L) and (τ(j), σ(j)) ∈ E(~L). We claim that this implies that
there must be a k and i 6= j such that (σ(i), τ(i)) = (τ(j), σ(j)) = (k, k + 1). Assume the latter is not true.
Then for every k ∈ N only one of the ordered pairs (k, k+1) and (k+1, k) appears among the ordered pairs
(σ(i), τ(i)). Let ~L be an orientation of L for which the edge {k, k+1} is oriented from k to k+1 if the ordered
pair (σ(i), τ(i)) = (k, k + 1) for some i and it is oriented from k + 1 to k if (σ(i), τ(i)) = (k + 1, k) for some
i ∈ N, while the rest of the edges are oriented arbitrarily. Since our condition was that (σ(i), τ(i)) = (k, k+1)

and (σ(j), τ(j)) = (k + 1, k) cannot both occur, such an ~L exists. But the construction of ~L implies that
there is no j ∈ N for which (τ(j), σ(j)) ∈ E(~L) contradicting our assumption. This contradiction proves
that there must exist some k and i 6= j such that (σ(i), τ(i)) = (τ(j), σ(j)) = (k, k + 1).

The above observation motivates the following definition.

Definition. Let G be an undirected graph with vertex set N. We will say that the permutations σ and τ of
[n] are robustly G-different if there are two elements i ∈ [n] and j ∈ [n] such that (σ(i), τ(i)) = (τ(j), σ(j))
and {σ(i), τ(i)} ∈ E(G).

Let NN(G,n) be the maximum cardinality of a set of pairwise robustly G-different permutations of [n].
We call

RR(G) = lim sup
n→∞

1

n
logNN(G,n)

the robust permutation capacity of G.

We are interested in the value of RR(L). It follows immediately from the definitions that RR(L) ≤
Rmin(L); one of the main goals of our paper is to show that this inequality is strict. To explore RR(L) we
first prove the following easy fact.

Proposition 4. For the semi-infinite path L we have

NN(L, n) ≥ 2b
n
2 c,

implying

RR(L) ≥ 1

2
.
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Proof. Consider the set of permutations that can be obtained as a product of some or all of the inversions
(2k − 1, 2k), where k ≤ n/2. It is straightforward to check that these permutations are pairwise robustly
L-different and their number is 2b

n
2 c, which implies the statement.

We conjecture that the above lower bound is tight. Our main result in this section is a weaker upper
bound on RR(L) which is nevertheless smaller than the lower bound proven on Rmin(L) in Theorem 1.

Theorem 5.
RR(L) ≤ log

π

2
≈ 0.651.

For an undirected graph G, let Γ̂G(n) be the robust analogue of the graph ΓD(n) defined for digraphs D:
the vertex set of Γ̂G(n) is the set of permutations of [n], and two vertices are adjacent in Γ̂G(n) if they are
robustly G-different. It follows from the definitions that NN(G,n) = ω(Γ̂G(n)). (The discussion preceding
Definition 3 shows that ωs(ΓL(n)) = ω(Γ̂L(n)). In fact, Γ̂L(n) is just the undirected graph we obtain from
the digraph ΓL(n) if we disregard the orientation and the multiplicity of the edges. In other words, one can
easily see that ΓL(n) is nothing but the symmetrically directed equivalent of the undirected graph Γ̂L(n).)
Notice that Γ̂G(n) (just like ΓD(n) for directed D) is a vertex-transitive graph, as for any two of its vertices
there is a permutation of [n] that can take one to the other.

We will use the standard notation α(F ) for the independence number and χf (F ) for the fractional
chromatic number of a graph F . We will make use of the basic inequality ω(F ) ≤ χf (F ), for any graph F .
We will also use the fact that, if F is vertex-transitive, then χf (F ) = |V (F )|/α(F ). For these and other
basic facts about the fractional chromatic number, we refer to [21].

Proof of Theorem 5. First we find a large independent set in the graph Γ̂L(n). Let

In = {σ ∈ Sn : ∀k ∈ [bn/2c] σ−1(2k) < σ−1(2k − 1) and

σ−1(2k) < σ−1(2k + 1) (provided that 2k + 1 ≤ n)}.

In words, In is the collection of all those permutations of [n] that place each even number in an earlier position
than either of its at most two odd neighbors. We show that the permutations in In form an independent set
in the graph Γ̂L(n).

Let σ and τ be two arbitrary elements of In, and suppose that they form an edge in Γ̂L(n). Then there
is some edge {`, `+ 1} of L for which there exists i and j such that σ(i) = τ(j) = ` and σ(j) = τ(i) = `+ 1.
We may assume without loss of generality that i < j. Then σ ∈ In implies that ` is even, while τ ∈ In
implies that ` is odd. This contradiction proves that In is indeed an independent set in Γ̂L(n).

By the vertex-transitivity of Γ̂L(n), we have that

χf (Γ̂L(n)) =
|V (Γ̂L(n))|
α(Γ̂L(n))

≤ n!

|In|
.

The size of the set In is a well-investigated quantity. The permutations in the set In are called alternating,
and the problem of determining their number, called André’s problem, was already considered in [2] in 1879.
Some more recent references where the asymptotics of this sequence appears are [25] (cf. the Note on page
455) and [3] (cf. page 3); see also [24] for the vast literature on this sequence. The asymptotic behavior of
the sequence is given by |In| ∼ 2(n+2)n!/π(n+1).

Substituting this value into the above bound on χf (Γ̂L(n)), and using NN(L, n) = ω(Γ̂L(n)) ≤ χf (Γ̂L(n)),
we obtain that

RR(L) ≤ lim
n→∞

1

n
log

πn+1

2n+2
= log

π

2

as stated.

The following is an immediate consequence of Theorems 1 and 5.
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Corollary 6.
RR(L) < Rmin(L).

It is rather frustrating that, for Rmin(L) itself, we do not have any better upper bound than the trivial value
1. A modest improvement on the best known upper bound in the undirected case is that we at least know
N(~L, n) <

(
n

bn/2c
)

for some orientations of L.

Proposition 7. If ~L is an orientation of L that has at least two vertices of [n] which have different parity
and either both have zero outdegree or both have zero indegree, then

N(~L, n) <

(
n

bn/2c

)
.

Proof. Assume ~L is as in the statement and let i = 2k and j = 2` + 1 be the two vertices satisfying the
conditions therein. We may assume without loss of generality that they both have outdegree zero. Let Mn

be a set of pairwise ~L-different permutations. We may assume that the identity permutation is in Mn. Now
consider an arbitrary permutation σ of [n] that puts odd elements in the odd positions and even elements
in the even positions, except that there is an even number in position j and an odd number in position
i. Thus the parity pattern of σ is different from that of the identity permutation. Hence, if Mn ≥

(
n

bn/2c
)

(note however, that strict inequality is impossible here by the upper bound N(L, n) ≤
(

n
bn/2c

)
of [13] and

the obvious inequality N(~L, n) ≤ N(L, n)), then one such permutation σ should appear in Mn. However,
since the identity permutation (which is in Mn) has a sink at both of those places where it has an element of
different parity from σ, there is no position with an arc in ~L from the element in the identity permutation to
the element of σ in the same position. This implies that our ~L-different set of permutations cannot contain
such a σ, and therefore |Mn| <

(
n

bn/2c
)
. This proves the statement.

It should be clear that if there are many sources and sinks in both parity classes, then the difference(
n

bn/2c
)
−N(~L, n) can be made large. Unfortunately this is still not enough to prove an exponential gap.

4 On bottlenecks
As stated in the Introduction, Corollary 6 is in sharp contrast with the main result about Sperner capacity
proven in [11]. For the sake of completeness, we state this result here. This needs some definitions. (For
detailed explanation and motivation for these definitions we refer to [11].)

Definition. The nth co-normal power of a digraph D is the digraph Dn with vertex set V (Dn) = V (D)n,
i.e., the n-length sequences of vertices of D, and edge set

E(Dn) = {(x,y) : ∃i (xi, yi) ∈ E(D)}.

Definition. ([10]) The Sperner capacity of a digraph D is defined as

Σ(D) = lim sup
n→∞

1

n
logωs(D

n).

If D = {D1, . . . , Dk} is a family of digraphs on the same (finite) vertex set V , then the Sperner capacity of
this family is defined as

Σ(D) = lim sup
n→∞

1

n
logωs(∩Di∈DD

n
i ),

where ∩Di∈DD
n
i denotes the graph on vertex set V n with edge set ∩Di∈DE(Dn

i ).

Csiszár and Körner [8] introduced a “within a fixed type” version of Shannon capacity, which has a natural
and straightforward extension for Sperner capacity. To introduce this notion we need the concept of types.
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Definition. The type of a sequence x ∈ V n is the probability distribution Px on V defined by

Px(a) =
|{i : xi = a}|

n
, for all a ∈ V.

For a fixed distribution P on V and ε > 0, we say that x ∈ V n is (P, ε)-typical if, for all a ∈ V , we have
|Px(a)− P (a)| < ε.

Definition. (cf. [8]) The Sperner capacity within type P of a (finite) family D of (finite) digraphs on the
common vertex set V is

Σ(D, P ) = lim
ε→0

lim sup
n→∞

1

n
logωs(∩D∈D(D

n(P, ε))),

where Dn(P, ε) denotes the digraph induced by Dn on the (P, ε)-typical sequences in V n. We write Σ(D,P )
for Σ(D, P ) if D = {D}.

The main result in [11] is the following statement.

Theorem 8. ([11]) For any two (finite) families of (finite) digraphs C and D on the same common vertex
set V , we have

Σ(C ∪ D, P ) = min{Σ(C, P ),Σ(D, P )}.

As any finite family can be obtained by adding its members to an empty family one by one, the above
theorem has the following straightforward implication.

Corollary 9. ([11]) For any (finite) family of (finite) digraphs D on a common vertex set V and any
probability distribution P on V , we have

Σ(D, P ) = min
D∈D

Σ(D,P ).

Since the number of different types is only polynomial in n (cf. Lemma 2.2 in [9]), this immediately
implies the main corollary of Theorem 8.

Corollary 10. ([11]) For any (finite) family of (finite) digraphs D on a common vertex set, we have

Σ(D) = max
P

min
D∈D

Σ(D,P ).

This theorem is sometimes referred to informally as the Bottleneck Theorem. This result was the key in
the solution of several extremal set theoretic problems, including a longstanding open problem by Rényi on
the maximum possible number of pairwise so-called qualitatively 2-independent partitions of an n-element
set, cf. [11]. It also has non-trivial consequences in information theory, see [7, 11, 19, 23] for examples of the
latter.

Note that Corollary 9 states that, within any type P , the Sperner capacity of the family D is the same
as that of the most restrictive single digraph (called the bottleneck) in the family. This can be applied, in
particular, to a family D that consists of all possible orientations Di of the same undirected graph G. Note
that, for such a family D, if (x,y) is an edge of ∩Di∈DD

n
i , then there are coordinates i and j and an edge

{a, b} ∈ E(G) such that (xi, yi) = (yj , xj) = (a, b). This follows analogously to the similar statement for
permutation capacities that we described right before the introduction of robust capacity in Definition 3. We
want to argue that Corollary 6 expresses the lack of an analogous result for permutation capacities already
in the case of such special families discussed in this paragraph.

There is an obvious analogy between Sperner capacity and the notions investigated in this paper. Indeed,
when looking at permutations of the first n positive integers and their relations according to whether or not
there is a position where we see an edge of some fixed directed graph, then we consider analogous relationships
to those appearing in the definition of Sperner capacity. In the same manner, considering permutations that
are pairwise in the required relationship with respect to all orientations of a given undirected graph on N
is analogous to the investigation of the Sperner capacity of a family that consists of all different oriented
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versions of a fixed undirected (finite) graph. For the latter situation, Corollary 10 tells us that the maximum
number of sequences pairwise satisfying the required relation is essentially determined (in the sense of the
asymptotic exponent) by the “weakest member of the family” considered within the “best type”. When we
investigate permutations, then we are always “within the same type” as every element (i.e., natural number
in our case) appears exactly once in any permutation. Thus if an analogous result were true for our problem
involving permutations, it would formally look like the statement of Corollary 9. In particular, for the family
L of all orientations of L, RR(L) would stand in place of Σ(D, P ) (notice that by the discussion preceding
Definition 3, RR(L) is just the asymptotic exponent of a largest family of permutations pairwise satisfying
the requirements for all elements of the family L) and Rmin(L) would stand in place of minD∈D Σ(D,P ).
Thus the analogous statement would give that the obvious inequality

RR(L) ≤ Rmin(L)

should hold with equality. Now note that it is exactly this statement that we disproved by Corollary 6 in
the previous section.

We add, that the main role of types in the proof of Theorem 8 is that the elements of any sequence of
some given type can be permuted so that we get an arbitrarily chosen other sequence of the same type. This
property also holds for our current sequences representing permutations. Therefore, the methods of [11] can
be used, but there are serious limitations due to the fact that, in the present context, we are dealing with
infinite families of digraphs. Corollary 6 indicates that these limitations are essential, as they lead to the
nonexistence of a bottleneck theorem here.

If we consider only finitely many orientations of L, then the methods of [11] seem to work. By this we
mean that defining, for every F ⊆ L, the quantity

R(F) := lim sup
n→∞

1

n
logωs(∩~L∈FΓ~L(n)),

which is the asymptotic exponent of the maximum size of a set of permutations that are pairwise ~L-different
simultanously for all ~L ∈ F (so, in particular, R(L) = RR(L)) we have R(F) ≥ Rmin(L) whenever F
is finite. This statement is somewhat weaker than the more direct analogue of Corollary 9 stating that
R(F) = min~L∈F R(~L), which is perhaps also true; however, it already shows that the main reason for
a different behavior in the present case is that the digraph family we consider here has infinitely many
elements.

5 Further lower bounds
In this section we improve upon the lower bound proven in Theorem 1, namely we prove the following.

Theorem 11. Let γ ≈ 1.647 be the largest root of the polynomial x4 − x2 − x− 3. Then

Rmin(L) ≥ log γ ≈ 0.7198.

We know by Lemma 2 that it is enough to give lower bounds on tL(n). Here and in the sequel we will
use the following notation. For k < n positive integers, an n-length sequence containing each of the numbers
1, . . . , k exactly once, and with a ∗ at the remaining n−k positions, stands for a permutation of [n] in which
the place of the first k natural numbers is already fixed while the ∗’s can be substituted by k + 1, . . . , n in
an arbitrary manner (provided that the resulting sequence is a permutation of the elements of [n]).

We will also use the notation ~L(j) for the orientation of the semi-infinite path L obtained from a given
orientation ~L of L by deleting its first j − 1 vertices, i.e., j will be its “starting” vertex. Accordingly, just as
before, the vertices of Γ~L(j)

(n) are the permutations of the numbers j, j + 1, . . . , j + n− 1, while adjacency
is defined analogously as in Γ~L(n).

We prove the following lemma.
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Lemma 12. We have
tL(n) ≥ gn,

where gn is the sequence defined by: gn = Fn+1 for n ≤ 5, and gn = gn−2 + gn−3 + 3gn−4 for n ≥ 6.

Proof. For n ≤ 5 the statement follows from Lemma 3. Let us fix an arbitrary orientation ~L of L. For n ≥ 6
we consider three cases according to how the first three edges of L are oriented.

Case 1:
If both vertices 2 and 3 have equal outdegree and indegree (that is all of the first three edges are oriented

towards their larger, or all of them towards their smaller, endpoint), then the following permutations form
a transitive clique in Γ~L(n). (According to the actual directions, the first sequence is the source or the sink
in that transitive clique.)

1 3 2 ∗ ∗ . . . ∗
2 1 ∗ ∗ ∗ . . . ∗
3 4 1 2 ∗ . . . ∗
3 4 2 1 ∗ . . . ∗
4 2 3 1 ∗ . . . ∗

(Note that the elements of the fourth column have no role in forming this transitive clique.)
Here the first sequence contains n − 3 ∗’s, the second n − 2, and the three others n − 4. By the induction
hypothesis, there exists a transitive tournament of size gn−4 in Γ~L(5)

(n − 4): take any such transitive
tournament, and substitute each of its vertices into (the stars of) a different copy of each of the last three
sequences. Do the same with a transitive clique of size gn−3 in Γ~L(4)

(n− 3) for the first sequence and with a
transitive clique of size gn−2 in Γ~L(3)

(n− 2) for the second sequence. It is now easy to see that the resulting
gn−2 + gn−3 + 3gn−4 permutations of [n] form a transitive tournament in Γ~L(n).

Case 2:
If one of the two vertices 2 and 3 has outdegree 0 while the other has outdegree 2 (that is, the directions of

the first three edges in ~L “alternate”), then the same sequences as above form again a transitive tournament
in Γ~L(n), except that their ordering is different. In the scheme below, either all edges go “downwards” or all
go “upwards”, depending on the direction of the first edge of the path:

1 3 2 ∗ ∗ . . . ∗
3 4 1 2 ∗ . . . ∗
3 4 2 1 ∗ . . . ∗
2 1 ∗ ∗ ∗ . . . ∗
4 2 3 1 ∗ . . . ∗

The argument is completed in the same way as in Case 1.

Case 3:
If we are neither in Case 1 nor in Case 2, then we may assume without loss of generality that vertex 2

has outdegree 0 and vertex 3 has outdegree 1, i.e., that (1, 2), (3, 2), (4, 3) ∈ E(~L): all other cases not covered
so far are equivalent to this one, so the following construction can be modified accordingly. The following
scheme gives a transitive tournament in Γ~L(n):

1 3 2 ∗ 4 ∗ . . . ∗
1 2 3 4 ∗ ∗ . . . ∗
1 2 ∗ 3 4 ∗ . . . ∗
1 ∗ 2 ∗ 3 ∗ . . . ∗
2 1 ∗ ∗ ∗ ∗ . . . ∗

Once again the argument is completed in the same way as in Case 1.
This concludes the proof of the lemma.
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Proof of Theorem 11. Lemma 12 implies Rmin(L) ≥ lim supn→∞
1
n log g(n) where the right hand side is equal

to γ by virtue of the recursion satisfied by the sequence gn.

For the special orientations of L where all vertices except 1 have equal outdegree and indegree (there are two
such orientations that are equivalent for our purposes), we have a slightly better lower bound. The oriented
L in which all edges are oriented towards their larger endpoint will be referred to as the “thrupath”. The
following proposition for this orientation is clearly valid also for its reverse.

Proposition 13. Let Lt denote the thrupath. We have

R(Lt) ≥ log γ′ ≈ 0.7413,

where γ′ is the largest root of the polynomial x3 − x− 3.

Proof. The proof goes along the same lines as the proof of Theorem 11 after realizing that the following
permutations form a transitive clique for the thrupath.

2 ∗ ∗ 1
3 2 1 ∗
3 ∗ 2 1
1 3 ∗ 2

One of the most interesting open problems concerning Sperner capacity is whether every graph has an
orientation, the Sperner capacity of which achieves the Shannon capacity of the underlying undirected graph
which is simply the Sperner capacity of the symmetrically directed equivalent. (This question is explored in
[20], where a positive answer was proven for a non-trivial special case. The same question is also treated in
[12].)

The analogous question for us here is whether the permutation capacity of the undirected semi-infinite
path L can be achieved as the permutation capacity of one of its orientations. Needless to say, we do not
know the answer, as our best upper bound on R(~L) for any orientation ~L of L is just the trivial value 1.
From the other side, Proposition 13 gives the best lower bound we know on any single orientation of L.
For L itself, the best lower bound published so far is the one in [14] having value 1

4 log 10 ≈ 0.83048. Next
we improve on this lower bound. (Unfortunately, the construction contained in Proposition 14 below is not
very aesthetic. We supply a slightly weaker, but more appealing, construction in the remark following this
proposition.)

Proposition 14. The maximum number of pairwise L-different permutations T (n) satisfies

T (n) ≥ 5T (n− 4) + 9T (n− 5) + 3T (n− 6)

implying
R(L) ≥ 0.8604.

Proof. The value 0.8604 is an approximation of the logarithm of the largest root of the characteristic equation
of the recurrence relation above, so it is enough to prove the validity of this recurrence relation.

This is done along similar lines to those in the proof of Theorem 11 by verifying that the following
seventeen permutations are pairwise L-different (colliding in the terminology of [13]).

5 2 3 1 4 ∗ ∗ ∗ ∗ 2 4 1 ∗ 3 ∗ ∗
5 ∗ 2 3 1 4 ∗ ∗ 4 ∗ ∗ 2 3 ∗ 1 ∗
5 4 ∗ 2 3 1 ∗ ∗ 4 3 ∗ ∗ 2 ∗ 1 ∗
5 1 4 ∗ 2 3 ∗ ∗ 4 ∗ ∗ 1 3 2 ∗ ∗
5 3 1 4 ∗ 2 ∗ ∗ 4 3 ∗ ∗ ∗ 1 2 ∗
5 3 2 4 1 ∗ ∗ ∗ 6 2 3 ∗ 4 ∗ 1 5
5 ∗ 3 2 4 1 ∗ ∗ 6 4 3 ∗ ∗ 1 2 5
5 1 ∗ 3 2 4 ∗ ∗ 6 2 5 1 ∗ 3 ∗ 4
5 4 1 ∗ 3 2 ∗ ∗
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Remark. The following construction is perhaps somewhat nicer than the one in Proposition 14. Consider
the 14 cyclic permutations of the following two 7-length sequences:

1 3 4 2 ∗ ∗ ∗
3 5 2 1 4 ∗ ∗

It is straightforward to check that these 14 permutations are pairwise colliding and thus prove the validity
of the recursive lower bound

T (n) ≥ 7[T (n− 4) + T (n− 5)].

This implies R(L) ≥ 0.8599. ♦

6 Finite graphs and digraphs
The paper [14] investigated the maximum number of pairwise G-different permutations of [n] for finite graphs
G with vertex set [m], m ≤ n. It was observed that, for a fixed finite graph G, this number is constant
if n is large enough. This eventual constant value κ(G) was introduced as a new graph invariant: it is
straightforward to note that κ(G) does not depend on the actual labelling of the vertices of G by natural
numbers. This invariant seems to be quite difficult to determine even for relatively small graphs, and the
only infinite family of graphs for which we could determine the value of κ(G) was that of the stars K1,r.

Interestingly, we can say just a little more in the case of digraphs. As for undirected graphs, if D is a
finite digraph, then the maximum number of pairwise D-different permutations of [n] will also be a constant
– which we denote κd(D) – for large enough n. This immediately follows from the corresponding statement
for undirected graphs, since κd(D) is clearly bounded above by κ(G), where G is the underlying undirected
graph of D. While the value of κ(G) is not known in general for complete bipartite graphs G, the directed
parameter is, at least in the case of the most natural special orientation. The key to this is the simple
observation that the answer is just a reincarnation of a well-known theorem of Bollobás.

We denote by
(
[n]
r

)
the set of r-element subsets of n.

Theorem 15. ([5]) Suppose that A1, . . . , Ak ⊆
(
[n]
p

)
and B1, . . . , Bk ⊆

(
[n]
q

)
are such that, for all i, Ai∩Bi =

∅, while, for all i 6= j, Ai ∩Bj 6= ∅. Then

k ≤
(
p+ q

p

)
.

The bound in Theorem 15 is sharp: consider the sets in
(
[p+q]

p

)
as the Ai’s and let Bi = [p+ q] \Ai.

Corollary 16. Let ~Kp,q denote the oriented complete bipartite graph with all edges having their heads in the
q-element partition class. Then

κd( ~Kp,q) =

(
p+ q

q

)
.

Proof. Let the two partition classes of ~Kp,q be A and B and consider a set M of pairwise ~Kp,q-different
permutations of [n]. For a permutation σ ∈ M , associate Aσ := {i : σ(i) ∈ A} and Bσ := {i : σ(i) ∈ B}.
It is easy to see that the system of set pairs {(Aσ, Bσ)}σ∈M satisfies the conditions in Theorem 15, and
therefore we have M ≤

(
p+q
p

)
.

To prove that this upper bound is attainable, we assume without loss of generality that the vertices in
A are labelled by 1, . . . , p and those in B by p + 1, . . . , p + q. Take all possible p-element subsets of [p + q]
and, for each such subset S, take any permutation that puts the elements of A in the positions in S, and
the elements of B in the positions of [p+ q] \ S. It is easy to see that these

(
p+q
q

)
permutations are pairwise

~Kp,q-different.

Remark. The undirected invariant κ(Kp,q) has a very similar “translation” to a problem in extremal set
theory. Namely, it is the maximum possible m for which set pairs {(Ai, Bi) : |Ai| = p, |Bi| = q}mi=1 can be
given with the property that, for all i, Ai ∩ Bi = ∅, while for all i 6= j, Ai ∩ Bj 6= ∅ or Aj ∩ Bi 6= ∅. This
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problem was considered by Tuza in [26], where it is solved in the case when p or q is equal to 1. The result
in [14] for κ(K1,r) translates to this solution. As far as we know, the problem is unsolved for all other pairs
of values p and q. ♦

It is observed in [14] that, if G is a finite graph with vertex disjoint subgraphs G1, . . . Gs then κ(G) ≥∏s
i=1 κ(Gi). The proof of this result carries over immediately to the digraph parameter κd.
In particular, if the graph G is the disjoint union of components G1, . . . , Gs, then we have κ(G) ≥∏s

i=1 κ(Gi). In the undirected case, we know of no examples where we have strict inequality. For digraphs,
however, the inequality can be strict. For example, let D1 be the digraph on {1, 2, 3} with directed edges
(1, 2) and (2, 3): it is easy to check that κd(D1) = 2. Now let D2 be a copy of the same digraph on vertex
set {4, 5, 6}, with directed edges (4, 5) and (5, 6). The following is a collection of eight (D1 ∪D2)-different
permutations:

3 2 ∗ 1 4 5 6 ∗ ∗ . . . ∗
3 2 ∗ 1 5 4 ∗ 6 ∗ . . . ∗
2 3 1 ∗ 4 5 6 ∗ ∗ . . . ∗
2 3 1 ∗ 5 4 ∗ 6 ∗ . . . ∗
∗ 3 2 1 ∗ 4 6 5 ∗ . . . ∗
∗ 3 2 1 4 ∗ 5 6 ∗ . . . ∗
3 ∗ 1 2 ∗ 4 6 5 ∗ . . . ∗
3 ∗ 1 2 4 ∗ 5 6 ∗ . . . ∗

Here, the graph D1 ∪D2 is to be regarded as being a graph on [n], for n ≥ 8, and the ∗’s represent the
natural numbers 7, . . . , n, in arbitrary order.

Thus we have κd(D1 ∪D2) ≥ 8 > 4 = κd(D1)κd(D2).
Returning to the undirected case, it seems even to be difficult to find κ(tK2), where tK2 is the union of t

disjoint edges: it is conjectured that the lower bound κ(tK2) ≥ 3t is tight in this case, and an upper bound
of 4t was given in [14].

Even checking that κ(2K2) = 9 takes some work: we give a brief sketch of an argument. Let {1, 2} and
{3, 4} be the two edges of 2K2, and let C be a set of (2K2)-different permutations. First, assume that there
are three permutations in C with, say, a 1 in the first position. By a case analysis involving how many
different positions are occupied by the 2’s in these three permutations, it can be shown that |C| ≤ 9. On the
other hand, if there is no instance of three permutations in C with the same element in the same position,
then any element of C is adjacent to at most 8 others in C – two via each of the four positions where 1,2,3,4
occur – and so again |C| ≤ 9. It is possible to use this result to improve the upper bound κ(tK2) ≤ 4t

slightly, but not by an exponential factor.
Let t ~K2 be the disjoint union of t directed edges. It seems likely that κd(t ~K2) = κd( ~K2)

t = 2t, but again
there seems to be no immediate proof.

At the other extreme, the problem of finding κd for oriented complete graphs, e.g., those of transitive
tournaments, is as open as for their undirected counterparts, i.e., the determination of the values κ(Kr), cf.
[14]. We do not know even whether κ̂(Kr) := limn→∞ NN(Kr) is superexponential in r.

7 Open problems
We conclude by collecting some of the open problems, some already mentioned, that are related to the topic
of the present paper.

Problem 1: What is the value of RR(L)? In particular, is it equal to 1
2?

Problem 2: Is Rmax(L) > Rmin(L), i.e., are there two different orientations L1 and L2 of the semi-infinite
path L for which R(L1) 6= R(L2)? Is Rmax(L), or even Rmin(L), equal to 1?

If Rmax(L) = 1, then that immediately solves the next problem. However, in case of a negative answer, the
problem is still interesting.

Problem 3: Is Rmax(L) equal to R(L)?
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We repeat the asymptotic version of the conjecture by Körner and Malvenuto.

Problem 4: Is R(L) equal to 1?

Finally, we put here again the problems mentioned at the end of the previous section.

Problem 5: Is κd(t ~K2) equal to 2t?

Problem 6: Is κ̂(Kr) superexponential in r?
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